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Resumo: O cálculo da seção de choque e+e− → (hádrons) é um dos principais

testes da teoria das interações fortes, a Cromodinâmica Quântica (QCD). A liber-

dade assintótica, prevista pela função β da QCD, que garante que o acoplamento

forte diminui de intensidade para energias mais altas, é um ingrediente crucial

neste cálculo. Neste trabalho testamos a liberdade assintótica da QCD com a

evolução de αs a um loop utilizando dados reais e recentes para a seção de choque

σ(e+e− → hádrons).
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1 Introdução

A f́ısica de part́ıculas elementares estuda a matéria no seu ńıvel mais fundamental, nas menores

escalas de comprimento. Podemos dizer que este ramo da f́ısica se iniciou no final do século

XIX com a descoberta do elétron por J. J. Thomson e se fortaleceu ainda mais na virada para o

século XX, principalmente com a descoberta do fóton nos diversos experimentos que colocavam

em xeque a Mecânica Clássica e levaram ao nascimento da Mecânica Quântica.

Qualquer teoria para as part́ıculas elementares deve ser consistente com a Relatividade

Especial. A combinação da Mecânica Quântica com a Relatividade Especial levou Dirac à

equação hoje conhecida como equação de Dirac, que descreve part́ıculas de spin-1/2, e ao

combinar com a Teoria Clássica de Campos entramos no ramo da Teoria Quântica de Campos

(QFT). A quantização do campo eletromagnético, necessária para descrever o efeito fotoelétrico,

trouxe um novo formalismo para a interação entre as part́ıculas. Os quanta dos campos são

interpretados como part́ıculas com números quânticos bem definidos, e as interações entre elas

são mediadas por outros campos, cujos quanta também são part́ıculas. Dessa forma, podemos

pensar na interação entre dois elétrons, por exemplo, como sendo consequência da troca de

fótons.

O primeiro grande triunfo dessa nova teoria veio com a Eletrodinâmica Quântica (QED) [1],

que descreve a interação de elétrons e pósitrons com o campo eletromagnético quantizado. O

sucesso do programa de renormalização — desenvolvido por Feynman, Schwinger, Tomonaga,

Dyson e outros — para lidar com os infinitos que surgiam na teoria possibilitou cálculos com

precisão muito maior, levando a QED a um acordo espetacular com os experimentos.
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Esse novo formalismo para a interação entre as part́ıculas trouxe uma nova abordagem para

um problema existente no modelo atômico: a estabilidade do núcleo. Para compensar a repulsão

Coulombiana entre os prótons é necessário que exista uma outra força entre os nêutrons e

prótons capaz de estabilizar o núcleo. Essa é a chamada força nuclear forte e sua primeira teoria

quantitativa veio com Yukawa, que propôs a existência de uma part́ıcula mediadora massiva (da

ordem de 300 vezes a massa do elétron), tornando assim o alcance da força extremamente curto

— da ordem do raio do núcleo atômico. De fato, uma part́ıcula com as propriedades previstas

por Yukawa foi encontrada em 1947, em experimentos envolvendo raios cósmicos, por César

Lattes e seu grupo [2].

O aumento da precisão experimental em conjunto com estudos mais detalhados revelaram

um grande número de novas part́ıculas com diferentes caractereŕısticas — modos de decaimento,

carga, massa, etc. O modelo para explicar as propriedades dessas diversas part́ıculas veio em

1964, quando foi proposta a existência dos quarks. Os quarks são part́ıculas elementares de

spin-1/2 e carga elétrica fracionária que, quando combinados, formam os hádrons. O próton,

por exemplo, passou a ser visto como um estado ligado entre dois quarks u e um quark d (os

diferentes tipos de quarks são chamados de sabores). Uma outra importante caracteŕıstica dos

quarks está na existência de três cargas de cor, e portanto hádrons como o ∆++ (uuu) não

apresentam violação no prinćıpio da exclusão de Pauli [3]. Assim como a QED representa a

interação entre part́ıculas com carga elétrica, que é mediada por fótons, a interação forte atua

em part́ıculas com carga de cor e possui o glúon como mediador. A teoria de calibre que descreve

a interação forte é a Cromodinâmica Quântica (QCD).

Apesar das diversas evidências experimentais para a existência de quarks, eles nunca foram

observados livres na natureza. A ausência dessas observações é explicada pela hipótese do

confinamento de cor, que postula que objetos com carga de cor diferente de zero não se propagam

como part́ıculas livres, ficando confinados em estados singletos de cor, formando hádrons como o

próton e o nêutron, por exemplo. Acredita-se que o confinamento de cor tenha sua origem no fato

do glúon também possuir carga de cor. Em particular, a auto-interação do glúon é responsável

pela evolução peculiar do acoplamento forte como função da distância: a intensidade da interação

forte cresce com a distância, o que é compat́ıvel com a ideia de confinamento, e tende a zero

para distâncias curtas, representando a celebrada liberdade assintótica do acoplamento [4, 5].

O chamado Modelo Padrão (SM) da f́ısica de part́ıculas, assim como a QED e a QCD, é uma

teoria de interações entre campos baseada em simetrias de calibre. O SM pode ser separado em

setores: a junção da QED com a teoria das interações fracas — responsável, por exemplo, pelo

decaimento beta do nêutron — forma o setor da Teoria Eletrofraca; já o setor das interações

fortes que descreve part́ıculas com carga de cor — quarks e glúons — é representado pela QCD.
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No que rege o setor das interações fortes, tanto as massas dos quarks quanto o acoplamento

forte αs — análogo à constante de estrutura fina αem = e2/4π~c ≈ 1/137 — são parâmetros

livres. O conhecimento preciso desses parâmetros é portanto um ingrediente fundamental em

testes de consistência da teoria, bem como um dos desafios principais nos cálculos de precisão

necessários para os colisores de part́ıculas. Entretanto, o confinamento dos quarks torna a

extração desses parâmetros fundamentais uma tarefa complexa. Precisamente por este fato, não

são observáveis f́ısicos no sentido estrito, e dependem de convenções relacionadas ao procedimento

de renormalização da teoria.

O procedimento adotado para a determinação de αs (e da massa dos quarks) segue, grosso

modo, sempre a mesma estratégia geral: calcula-se no estado da arte da QCD algum observável

da teoria que possa ser medido com razoável precisão. As massas dos quarks e αs são então

tratados — dentro de uma definição precisa — como parâmetros livres da previsão teórica;

da comparação com os resultados experimentais é posśıvel extrair esses parâmetros através de

um procedimento estat́ıstico. As predições teóricas, em geral, são obtidas através dos cálculos

de diagramas de Feynman, que são representações pictóricas de expressões matemáticas que

descrevem amplitudes em teorias de campos. As regras de Feynman para o cálculo de diagramas

dependem das interações fundamentais presentes na teoria [3].

Neste trabalho estamos interessados em realizar determinações para o acoplamento forte.

Para isso trabalharemos com uma das principais quantidades mensuráveis da QCD: a seção

de choque inclusiva de produção de hádrons em colisões elétron-pósitron, σ(e+e− → hádrons).

Usualmente, nestes estudos é utilizado o observável R(s), definido por1

R(s) ≡ σ(e+e− → γ∗ → hádrons)

4πα2
em/3s

' σ(e+e− → γ∗ → hádrons)

σ(e+e− → µ+µ−)
, (1.1)

onde a seção de choque da produção da muônica é calculada no limite sem massa e em ordem

árvore [3], cujo diagrama de Feynman está apresentado na Fig. 1a. A energia total do centro de

massa do sistema é dada por
√
s, sendo s a massa invariante do par e+e−.

Em energias abaixo da escala eletrofraca, tanto a produção de múons quanto a de quarks e

glúons é dominada por um fóton intermediário, e portanto os quarks e os múons acoplam-se à

corrente eletromagnética. Por conta da dualidade quark-hádron, o numerador da Eq. (1.1) é

descrito pela seção de choque e+e− com quarks e glúons no estado final. Devido ao confinamento

de cor, este cálculo da seção de choque é pouco afetado por efeitos de longa distância, responsáveis

pelo complexo processo de hadronização, a não ser nas proximidades de ressonâncias e, portanto,

para energias suficientemente altas, o cálculo feito na QCD deve corresponder à seção de choque

observada experimentalmente.

1Neste trabalho utilizamos o sistema natural de unidades ~ = c = 1.
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(a) e+e− → µ+µ−

(b) e+e− → qq̄

Figura 1: Diagramas de Feynman
em ordem árvore para colisões e+e−.
Em (a) temos a produção muônica
e em (b) a produção de hádrons
através do par qq̄ (quark-antiquark).

Espera-se que em primeira aproximação a seção de choque

da produção hadrônica — Fig. 1b — seja análoga à da

produção muônica. Devemos apenas multiplicar pelo número

de cores Nc para os quarks e realizar a transformação αem →
Qfαem, sendo Qf a carga elétrica do quark de sabor f (em

unidades de e). Portanto,

σ(e+e− → hádrons) ≈ Nc

∑
f

Q2
f

(
4πα2

em

3s

)
, (1.2)

onde a soma é feita sobre todos os sabores ativos até a

energia
√
s, isto é, consideramos todos os sabores com massa

mf .
√
s/2.

Na prática, com o aux́ılio do teorema óptico [6], para

calcular a seção de choque σ(e+e− → hádrons) basta calcu-

larmos a parte imaginária das contribuições de estados inter-

mediários hadrônicos no espalhamento frontal e+e− → e+e−,

de modo que o observável R(s) pode ser descrito de forma

pertubativa em termos de uma função escalar Πh(s) que

representa as correções da QCD ao propagador do fóton, ou

seja, traz as correções devido a produções e aniquilações de pares quark-antiquark a partir do

fóton intermediário, e as trocas de glúons entre eles. Mais precisamente, a função Πh(s) é o

termo escalar das amplitudes dos diagramas de correções hadrônicas na polarização do vácuo,

definida de forma a ser invariante de Lorentz.

Para energias distantes de ressonâncias, a relação entre o observável R(s) e Πh(s) é [7]

R(s) =
12π

e2
ImΠh(s+ i0), (1.3)

sendo i0 um indicativo de que devemos tomar a parte imaginária acima do eixo real2. Diferentes

sabores de quarks contribuem para os estados hadrônicos, então é fundamental que todos os

sabores ativos para uma dada energia total de centro de massa sejam considerados.

Na região de energia que se trabalha com R(s) as correções devido à QCD prevalecem, pois

nessa região o acoplamento forte admite valores αs(s) & 0.1, enquanto o acoplamento da QED

vale cerca de 1/137 [8]. Isso implica em que as correções dominantes na expansão pertubativa

de R(s) são em potências de αs(s) [8], isto é,

R(s) = Nc

∑
f

Q2
f

(
1 +

αs(s)

π
+ · · ·

)
+O

(
m4
f

s2

)
+O

(
Λ4

QCD

s2

)
, (1.4)

2A transformação s→ s+ i0 está relacionada à prescrição de Feynman ao escrever o propagador da teoria [6].
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onde o termo O(m4
f/s

2) representa a correção devido às massas dos quarks e o termo O(Λ4
QCD/s

2)

as contribuições que fundamentalmente não são pertubativas. A expressão teórica para R(s)

escrita na forma da Eq. (1.4) é obtida calculando a parte pertubativa com mf = 0 — no chamado

limite quiral.

Vários aspectos da QCD são testados em uma análise quantitativa de R(s), a saber a

carga elétrica fracionária, o número de cores e o acoplamento forte. Na Sec. 2 deste trabalho

discutiremos a dedução da Eq. (1.3) e na Sec. 3 o cálculo de R(s) em ordem α0
s através do

diagrama de um loop e usando o teorema óptico, incluindo a correção devido às massas dos

quarks. Em seguida, iremos explorar uma abordagem mais fenomenológica do observável a

fim de se extrair o valor do acoplamento forte a um loop em diferentes escalas de energia. Na

Sec. 4 discutiremos em algum detalhe a função β da QCD, que prevê a liberdade assintótica de

αs(s). Por fim, com os dados experimentais para R(s) e sua formulação teórica até ordem αs,

na Sec. 5 derterminaremos o valor de αs(s) em regiões com Nf = 3, 4 e 5, sendo Nf o número

de sabores ativos. A análise estat́ıstica será feita numa abordagem frequentista minimizando-se

a função χ2.

2 Construção do observável R(s)

Figura 2: Diagrama de Feynman para o espalha-
mento frontal e+e− → e+e−. A bolha hachurada
está relacionada à função Πh(s).

O teorema óptico é uma consequência direta

da unitariedade da matriz de espalhamento na

QFT [6]. Com ele, é posśıvel relacionar a parte

imaginária da amplitude M(s) do diagrama da

Fig. 2 com a soma de todas as contribuiçoes de

part́ıculas em estados intermediários no espalha-

mento frontal, já que a descontinuidade no eixo

real da amplitude para s ≥ 4m2 (limiar de criação

de duas part́ıculas de massa m) é fruto da pos-

sibilidade de serem criadas part́ıculas na camada

de massa. De forma mais espećıfica, a relação

entre ImM e a seção de choque total σtot(e
+e−)

do espalhamento e+e− para qualquer estado de

part́ıculas permitido é

ImM(e+e− → e+e−) = 2
√
s|pcm| σtot(e+e−), (2.1)

onde pcm é o momento de um dos elétrons incidentes no CM. No limite quiral temos que

|pcm| =
√
s/2, e portanto

σtot(e
+e−) =

ImM(e+e− → e+e−)

s
. (2.2)
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Neste caso, usando regras de Feynman a amplitudeM do diagrama da Fig. 2 é dada por [6]

iM = [ūs(p1)(−ieγσ)vr(p2)]
−igσµ
q2

(iΠµν(q))
−igνλ
q2

[v̄r(p2)(−ieγλ)us(p1)], (2.3)

onde u e v são os spinores de Dirac associados à part́ıcula e à anti-pat́ıcula, γ’s são as matrizes

de Dirac, gµν é a métrica do espaço de Minkowski, pi são os quadri-momentos das part́ıculas

externas (os quadri-momentos não se alteram no espalhamento frontal), q = (p1 + p2) é o

quadri-momento do fóton intermediário e Πµν(q) é o tensor de polarização associado à bolha

hachurada na Fig. 2, que leva em conta todas as correções ao propagador do fóton (não só as

hadrônicas). Por conta da identidade de Ward [6] qµΠµν(q) = qνΠ
µν(q) = 0 e, consequentemente,

podemos escrever
Πµν(q) = (qµqν − q2gµν)Π(q2), (2.4)

onde a função Π(q2) é o termo puramente escalar na polarização do vácuo. O termo qµqν

resulta em zero quando contráıdo com as correntes externas do elétron, então apenas o fator

proporcional a gµν sobrevive. Logo,

iM =
(−ie)2

s2
[ūs(p1)γµv

r(p2)][v̄
r(p2)γ

µus(p1)](isΠ(s)), (2.5)

sendo que aqui já utilizamos o fato de que s = q2.

Como não estamos interessados em estados de spin espećıficos, somamos sobre todas as

possibilidades posśıveis e utilizamos as propriedades de completeza dos spinores [3]. No fim,

encontramos que o valor médio da amplitude é dado por

〈M〉 ≡ 1

4

∑
spins

M = e2Π(s). (2.6)

Finalmente, se considerarmos apenas as correções hadrônicas em Π(s), deduzimos que a seção

de choque da produção de hádrons é dada por

σ(e+e− → hádrons) =
e2

s
ImΠh(s), (2.7)

onde Πh(s) representa apenas as correções hadrônicas ao propagador do fóton.

Da Eq. (2.7) na definição de R(s) conclúımos que

R(s) =
12π

e2
ImΠh(s+ i0), (2.8)

onde aqui realizamos a transformação s→ s+ i0. Essa equação nos mostra que para obter uma

representação téorica para o observável R(s) basta calcularmos a parte imaginária das correções

da QCD ao propagador do fóton.

Agora que deduzimos a Eq. (1.3) é interessante realizar o cálculo de Πh(s) a um loop para

obtermos de forma expĺıcita a dependência em s do observável R(s) em ordem α0
s.
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3 Cálculo de Π(s) a um loop

Para obtermos a parte imaginária de Πh(s) a um loop precisamos calcular a amplitude do

diagrama da Fig. 3. Para este diagrama, considerando um quark de carga Q (em unidades de e)

e massa m, o cálculo da amplitude é essencialmente igual ao da polarização do vácuo em ordem

dominante na QED multiplicado por NcQ
2. Portanto [7]

iΠµν
h,1(q) = −Nc

∫
d4p

(2π)4
Tr

{
i(/p− /q +m)(iQeγµ)i(/p+m)(iQeγν)

[(p− q)2 −m2 + i0](p2 −m2 + i0)

}
, (3.1)

onde /p ≡ pµγµ. O ı́ndice 1 indica que o cálculo está sendo feito a um loop.

Figura 3: Diagrama de Feynman em um
loop para a polarização do vácuo. Produção
e aniquilação do par qq̄.

A integral para Πµν
h,1(q) diverge para valores de p2

grandes — divergência ultravioleta. Visto que isso

é consequência da dimensão D = 4 do espaço de

Minkowski, contornamos a divergência com o processo

de regularização dimensional [10], que consiste em

realizar a integral em D = 4 − 2ε dimensões (no

final dos cálculos devemos tomar o limite ε → 0+).

Para manter a dimensão de Πµν
h,1 devemos introduzir

um parâmetro global µ2ε [7], sendo µ uma escala de

energia arbitrária. Assim, em D dimensões,

iΠµν
h,1(q)→ −(Qe)2µ2εNc

∫
dDp

(2π)D
Tr

{
(/p− /q +m)γµ(/p+m)γν

[(p− q)2 −m2 + i0](p2 −m2 + i0)

}
. (3.2)

Contraindo os dois lados desta equação com gµν e utilizando a Eq. (2.4) obtemos

Πh,1(q
2 + i0) =

−iµ2εQ2e2Nc

(D − 1)(q2 + i0)

∫
dDp

(2π)D
Tr{(/p− /q +m)γµ(/p+m)γµ}

[(p− q)2 −m2 + i0](p2 −m2 + i0)
, (3.3)

onde o termo (D − 1) do denominador surgiu da relação de contração da métrica gµνg
µν = D.

O traço e as propriedades de contração das matrizes γ dependem da dimensão D = 4− 2ε

considerada nos cálculos [6]. Em espećıfico para o numerador da Eq. (3.3) encontramos que

Tr[(/p+m)γµ(/p− /q +m)γµ] = −4(D − 2)p · (p− q) + 4Dm2. (3.4)

Para tratar o denominador no integrando de Πh,1(q
2 + i0) é conveniente utilizar os parâmetros

de Feynman [6], que consiste em realizar a transformação

1

(p2 −m2 + i0)[(p− q)2 −m2 + i0]
=

∫ 1

0

dx

{x[(p− q)2 −m2] + (1− x)(p2 −m2) + i0}2
. (3.5)

Reescrevendo a Eq. (3.3) já com o resultado do traço, com um parâmetro de Feynman e em

termos da variável l = p− xq, ficamos com
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Πh,1(q
2 + i0) =

−iNc(Qe)
2µ2ε

(D − 1)(q2 + i0)

∫ 1

0

dx

∫
dDl

(2π)D

× −4(D − 2)(l2 + ∆) + [4(D − 2) + 4D]m2 + (termos lineares em l)

(l2 −∆)2
,

(3.6)

onde ∆ é definido por
∆ ≡ −[x(1− x)(q2 + i0)−m2]. (3.7)

Por simetria, os termos lineares em l resultam em zero quando integrados em todo o espaço.

Algumas simplificações para a integral surgem quando passamos a variável de integração para o

espaço Euclideano, pois assim poderemos utilizar coordenadas esféricas D−dimensionais. Para

isso, realizamos uma rotação de Wick [6], que consiste em rotacionar apenas o eixo temporal l0

para uma direção temporal imaginária, isto é, l→ lE e l0 = il0E. Assim,

Πh,1(q
2 + i0) = −4NcQ

2e2
D − 2

D − 1

µ2ε

q2 + i0

∫ 1

0

dx

∫
dDlE
(2π)D

−l2E + ∆

(l2E + ∆)2
+

+
NcQ

2e2

D − 1

µ2ε

q2 + i0
[4(D − 2) + 4D]m2

∫ 1

0

dx

∫
dDlE
(2π)D

1

(l2E + ∆)2
.

(3.8)

Resolvendo as integrações em lE utilizando coordenadas esféricas3, obtemos que para D = 4− 2ε

Πh,1(q
2 + i0) = − 8NcQ

2e2

(4π)2(q2 + i0)
(4πµ2)εΓ(ε)

(∫ 1

0

dx∆1−ε −m2

∫ 1

0

dx∆−ε
)
. (3.9)

As integrais em x restantes dependem da massa do quark. No caso m = 0 podemos resolvê-las

analiticamente em termos de funções Γ, e portanto teremos um resultado capaz de evidenciar o

poder da regularização dimensional em tornar expĺıcita a divergência. Deste modo, primeiro

vamos realizar os cálculos no limite quiral e obter o valor para R(s) em primeira aproximação;

em seguida trataremos da correção devido às massas.

3.1 Limite m = 0

No limite m = 0 o segundo termo da Eq. (3.9) resulta imediatamente em zero. Para o primeiro

termo, a integração em x pode ser escrita em termos de funções Γ com o aux́ılio da função beta

de Euler4. Assim, para m = 0,∫ 1

0

dx ∆1−ε = (−q2 − i0)1−ε
Γ(2− ε)Γ(2− ε)

Γ(4− 2ε)
. (3.10)

Substituindo essa expressão na Eq. (3.9) e expandindo em torno de ε = 0 encontramos

Πh,1(q
2 + i0)|m=0 =

NcQ
2e2

12π2

[
1

ε
− γE + ln(4π)− ln

(
−q2 − i0

µ2

)
+

5

3
+O(ε)

]
, (3.11)

onde γE ≈ 0.577 é a constante Gamma de Euler.

3Integrais desse tipo podem ser encontradas na Ref. [6].
4A função beta de Euler é B(u, v) ≡

∫ 1

0
dz zu−1(1− z)v−1 = Γ(u)Γ(v)

Γ(u+v) .
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A Eq. (3.11) possui a divergência escrita de forma expĺıcita no fator 1/ε, e portanto dizemos

que a expressão está regularizada. Note que ainda temos um parâmetro de escala arbitrário µ

que surgiu no processo de regularização. Trataremos deste fator mais adiante ao falar da função

β da QCD.

Para encontrarmos o valor de R(s) em primeira aproximação basta tomarmos a parte

imaginária de Πh,1(q
2 + i0)|m=0 e somarmos sobre todos os sabores ativos — vide Eq. (1.3).

Como Im [ln(−|z| − i0)] = −π, conclúimos que

R(s) ≈ Nc

∑
f

Q2
f . (3.12)

Visto que cada sabor f de quark torna-se ativo em
√
s ≈ 2mf , o resultado numérico para R(s)

em ordem α0
s e no limite quiral é

R(s) ≈


2,
√
s . 2× 1.275 GeV (quarks u, d, s)

10
3
, 2× 1.275 .

√
s . 2× 4.18 GeV (quarks u, d, s, c)

11
3
,
√
s & 2× 4.18 GeV (quarks u, d, s, c, b)

, (3.13)

onde aqui já consideramos Nc = 3. Os valores para as massas dos quarks foram extráıdos do

Particle Data Group (PDG) [8] e estão no esquema de renormalização MS.

3.2 Caso massivo

Para realizar os cálculos com massa devemos considerar uma expansão em torno de ε = 0 antes

mesmo do processo de integração em x, já que neste caso não conhecemos as soluções anaĺıticas

das integrais. Ao expandirmos em série os integrandos da Eq. (3.9) ficamos com∫ 1

0

dx∆1−ε =

∫ 1

0

dx
[
∆−∆ln(∆)ε+O(ε2)

]
e

∫ 1

0

dx∆−ε =

∫ 1

0

dx
[
1− ln(∆)ε+O(ε2)

]
.

(3.14)

Logo a parte imaginária de Πh,1(q
2) é devido, até O(ε2), aos logaritmos.

Dada a definição de ∆ — Eq. (3.7) — e que Im [ln(−|z|−i0)] = −π, teremos uma contribuição

para a parte imaginária dos logaritmos apenas quando m2 − x(1− x)q2 ≤ 0. Resolvendo essa

desigualdade de 2o grau vemos que x ∈ [1
2
− 1

2
β; 1

2
+ 1

2
β], onde β ≡

√
1− 4m2

q2
é a velocidade dos

quarks no CM (a unitariedade da matriz de espalhamento implica que a parte imaginária dos

logaritmos é diferente de zero apenas para q2 = s > 4m2, que é o limiar de criação do par qq̄).

Portanto, até O(ε2) temos

Im

{∫ 1

0

dx∆1−ε
}

= −ε
∫ 1

2
+ 1

2
β

1
2
− 1

2
β

dx ∆ Im ln(∆) = −επβ
3q2

6
(3.15)

e, analogamente,

Im

{∫ 1

0

dx∆−ε
}

= επ

∫ 1
2
+ 1

2
β

1
2
− 1

2
β

dx = επβ. (3.16)
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Por fim, utilizando as Eqs. (3.15) e (3.16) na Eq. (3.9) e tomando ε→ 0+, conclúımos que

Im

{
Πh,1(q

2 + i0)

}
=
NcQ

2e2

12π

√
1− 4m2

q2

(
1 +

2m2

q2

)
. (3.17)

Substituindo essa expressão na Eq. (1.3) e somando sobre todos os sabores ativos obtemos

R(s) = Nc

∑
f

Q2
f

√
1−

4m2
f

s

(
1 +

2m2
f

s

)
= Nc

∑
f

Q2
f

(
1−

6m4
f

s2

)
+O

(
m6
f

s3

)
. (3.18)

Essa é a predição teórica para R(s) em ordem α0
s inclúındo a correção devido às massas.

Figura 4: Diagramas de Feynman a
dois loops na QCD para a polarização
hadrônica do vácuo.

Nesta seção exploramos algumas das ferramentas ma-

temáticas necessárias para abordar os cálculos de diagra-

mas que envolvem loops. Para obter o valor de R(s) em

ordem αs é necessário realizar o cálculo de Πh(q2 + i0) a

dois loops, que inclui a troca de um glúon na polarização

hadrônica do vácuo — Fig. 4. Este cálculo, que é apre-

sentado na Ref. [9], está fora do escopo deste trabalho.

Iremos considerar o resultado em ordem αs fornecido na

Eq. (1.4) e os dados experimentais para realizar deter-

minações de αs(s) a um loop. Para isso, antes devemos

explorar o processo de renormalização para o acopla-

mento forte e encontrar qual a dependência expĺıcita em

s para αs(s) a um loop.

4 O processo de renormalização e a função β da QCD

Tanto na QED quanto na QCD, quando realizamos cálculos de diagramas que envolvem loops

precisamos lidar com integrais divergentes. Para obter quantidades f́ısicas finitas, precisamos

(i) regularizar as expressões (isto é, tornar expĺıcitas as divergências), (ii) reconhecer que as

part́ıculas não interagentes (nuas) na qual a teoria da pertubação se basea não são as part́ıculas

f́ısicas reais que interagem (as interações modificam as propriedades das part́ıculas, como a

carga e a massa), e, por fim, (iii) devemos renormalizar a teoria ao relacionar as propriedades

das part́ıculas f́ısicas com as das part́ıculas nuas. Os infinitos originais da teoria aparecem nas

relações entre as quantidades f́ısicas e nuas. Essas relações, assim como as próprias part́ıculas

nuas, não são observáveis [11].

Na Sec. 3 abordamos o processo de regularização dimensional para tratar o cálculo de Πh(s)

a um loop. (Outro método de regularização bastante utilizado é o de Pauli-Villars, que está

apresentado, por exemplo, nas Refs. [6, 11].) Na Eq. (3.11) temos o exemplo de uma expressão

regularizada: a divergência ultravioleta ficou expĺıcita no fator 1/ε, mas um fator de escala

11



arbitrário µ foi necessário para corrigir a dimensão de Πh,1(s).

Enquanto o processo de renormalização é responsável por absorver as divergências expĺıcitas,

a equação do grupo de renormalização (RGE) impõe a independência de qualquer quantidade

f́ısica do parâmetro µ [7].

Quanto ao processo de renormalização a um loop, em espećıfico do acoplamento forte,

precisamos considerar 3 classes de diagramas a um loop: polarização do vácuo (4 diagramas),

correção dos vértices (3 diagramas) e auto-energia dos quarks (1 diagrama). A natureza não-

abeliana da QCD faz a quantidade de diagramas ser muito superior quando comparado à QED.

Os cálculos desses diagramas podem ser encontrados, por exemplo, na Ref. [12].

Após considerar todos os diagramas que contribuem para a renormalização do acoplamento,

definimos a constante de acoplamento adimensional renormalizada por

αR
s ≡ αs = Z−1α αbare

s , (4.1)

onde Zα é uma constante de renormalização e

αbare
s ≡ (gbare)

2µ−2ε/(4π), (4.2)

sendo gbare a constante de acoplamento nua que de fato apearece na Lagrangiana da QCD. Os

infinitos que surgem ao regularizar as expressões dos diagramas são todos absorvidos em Zα.

No esquema de renormalização MS, a constante de renormalização a um loop para αs(s)

é [7]

Zα(s) = 1 +
αs(s)

π
Z(1)
α

1

ε̂
+O(α2

s), (4.3)

onde 1

ε̂
≡ 1

ε
− γE + ln(4π) e Z(1)

α = − 1

12
(11Nc − 2Nf ). (4.4)

Para tratar a RGE, consideremos uma quantidade f́ısica F (q, αs,m), onde q representa os

momentos externos, αs(s) representa o acoplamento da QCD renormalizado e m a massa do

quark também renormalizada — tomemos apenas um sabor de quark para simplificar. Visto

que F (q, αs,m) é uma quantidade f́ısica, não pode depender do parâmetro de renormalização

arbitrário µ. Essa imposição se traduz matematicamente na RGE para F (q, αs,m):

µ
dF

dµ
=

[
µ
∂

∂µ
− β(as)

∂

∂as
− γ(as)m

∂

∂m

]
F (q, as,m) = 0, (4.5)

onde as(s) ≡ αs(s)/π e as funções β e γ são definidas por5

β(as) ≡ −µ
das
dµ

= β1a
2
s + β2a

3
s + . . . (4.6)

γ(as) ≡ −
µ

m

dm

dµ
= γ1as + γ2a

2
s + . . . (4.7)

5Várias definições destas funções aparecem na literatura, com diferentes fatores de π, sinais, etc. No caso da
função β, a definição tradicional tem o sinal oposto à nossa, de modo que β1 < 0.

12



A escolha do esquema de renormalização altera os valores para αs(s) e da massa dos quarks,

mas de modo que qualquer quantidade f́ısica seja independente do processo de renormalização

utilizado. Todavia, na prática, como trabalhamos com expansões perturbativas truncadas, sobra

uma dependência residual do esquema de renormalização.

A função β da QCD governa a equação diferencial para o acoplamento forte como função

da escala s e, por conseguinte, se conhecemos os seus coeficientes somos capazes de determinar

qual a dependência de αs(s) com a energia. Atualmente esses coeficientes são conhecidos

(analiticamente) até 5 loops [13]. Como neste trabalho estamos interessados na evolução de

αs(s) a um loop, seguimos a Ref. [7] para obter o coeficiente β1.

Utilizando as Eqs. (4.1) e (4.6) temos que

β(as) = −µd(Z−1α abares )

dµ
=
µ abares

Z2
α

dZα
dµ
− µ

Zα

dabares

dµ
. (4.8)

Tratamos o primeiro com uma regra da cadeia para tornar a derivada em termos de as e

utilizando a definição da própria função β da QCD, enquanto que para segundo termo utilizamos

a Eq. (4.2). Assim,

β(as)

[
1 + as

1

Zα

dZα
das

]
= 2εas. (4.9)

Essa última equação é geral e independe da quantidade de loops considerados no processo

de renormalização. Todavia, para dar continuidade devemos utilizar a Eq. (4.3) que representa

a constante de renormalização em apenas um loop. Logo,

(β1a
2
s + . . . )

{
1 + as

[
Z

(1)
α /ε̂+O(as)

1 + asZ
(1)
α /ε̂+O(a2s)

]}
= 2εas. (4.10)

Realizando uma expansão em torno de ε = 0 (nesse limite ε̂ → ε), comparando os termos de

O(as) e utilizando o valor de Z
(1)
α dado na Eq. (4.4) conseguimos obter o coeficiente β1:

β1 = −2Z(1)
α =

1

6
(11Nc − 2Nf ). (4.11)

Para encontrar os demais coeficientes da função β é necessário levar em consideração mais loops

no processo de renormalização para αs(s).

Agora que temos em mãos o coeficiente β1 podemos determinar a dependência de αs(s) a um

loop com a energia. Considerando apenas um loop na Eq. (4.6), isto é, fixando βi≥2 = 0, temos

1

β1

∫ as(µ2)

as(µ1)

das
a2s

= −
∫ µ2

µ1

dµ

µ
, (4.12)

e ao realizar as integrais encontramos

αs(µ2) =
αs(µ1)

[1− αs(µ1)
6π

(11Nc − 2Nf )ln
µ1
µ2

]
. (4.13)
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Figura 5: Curvas para αs(s) conforme previstas pela
Eq. (4.13). Para encontrar a dependência do acoplamento

com a distância basta saber que r = ~c
µ '

200[MeV fm]
µ . Aqui

a importância está apenas na caracteŕıstica assintótica da
curva, não nos valores de referência (as determinações de
valores de referência serão discutidos na Sec. 5).

A Eq. (4.13) representa a evolução

do acoplamento forte a um loop, su-

pondo conhecido o acoplamento αs(µ1)

em uma escala de energia µ1. Visto

que na QCD temos Nc = 3 e o número

de sabores ativos é Nf ≤ 6, o termo

(11Nc − 2Nf) é positivo, e como con-

sequência imediata αs(µ2) decresce de

forma logaŕıtmica e tende a zero no

limite µ2 →∞, conforme mostrado na

Fig. 5. Essa é a celebrada liberdade as-

sintótica da QCD, que rendeu o Prêmio

Nobel de F́ısica de 2004 para David

J. Gross, Hugh D. Politzer e Frank

Wilczek [4, 5]. Além disso, no sistema

natural de unidades que trabalhamos,

[energia] = [distância]−1, e portanto

o acoplamento possui um crescimento

logaŕıtmico com a distância.

Para determinar a evolução de αs(s) podemos utilizar tanto um valor de referência αs(µ1)

quanto a escala de energia ΛQCD (≈ 200 MeV no esquema MS [8]) para qual o acoplamento

forte diverge. Por convenção, utiliza-se como referência o valor de αs(s) na massa do bóson Z,

cujo valor médio mundial calculado pelo PDG é [8]

αs(mZ) = 0.1181± 0.0011. (4.14)

O resultado numérico para o acoplamento forte não pode ser previsto pelo SM, e portanto

esse parâmetro fundamental deve ser determinado através de descrições teóricas rigorosas (como

por exemplo da seção de choque e+e− → (hádrons)) aliadas a dados experimentais. Agora que

temos em mãos a evolução de αs(s) a um loop podemos fazer uso do observável R(s) estudado

neste trabalho para determinar valores de referência em regiões com Nf = 3, 4 e 5.

5 Determinação de αs(s) a um loop

Aqui vamos extrair valores de referência para αs(s) a um loop utilizando a predição teórica

para R(s) até ordem αs sem considerar a correção devido às massas e as contribuições não

pertubativas. Das Eqs. (1.4) e (4.13) ficamos com

14



R(s) = Nc

Nf∑
q=1

Q2
q

{
1 +

αs(µ1)

π

1[
1− αs(µ1)

6π
(11Nc − 2Nf )ln

µ1√
s

]}, (5.1)

sendo que Nc = 3 e Nf depende da região de energia a ser trabalhada. Para determinar o valor

do acoplamento utilizamos dados experimentais do observável e realizamos uma minimização da

função χ2 considerando αs(µ1) um parâmetro livre e µ1 uma escala de energia arbitrária.

O procedimento estat́ıstico adotado é o seguinte: consideremos um conjunto de N medidas

independentes yi em pontos xi conhecidos, e vamos pressupor que yi é distribúıdo de forma

Gaussiana com variância conhecida σ2
i e média µ(xi;θ), sendo θ um vetor cujas entradas são os

parâmetros da teoria a serem estimados. O objetivo principal é encontrar os valores para os

parâmetros que minimizam a função [14]

χ2(θ) =
N∑
i=1

(yi − µ(xi;θ))2

σ2
i

, (5.2)

que mede a distância entre os dados e a teoria. Aqui não está sendo levado em conta a correlação

entre os dados, de modo que a matriz de covariância é simplesmente diagonal.

As incertezas associadas ao ajuste podem ser estimadas com o aux́ılio da função ∆χ2 definida

por
∆χ2(θ) = χ2(θ)− χ2

min, (5.3)

onde χ2
min é o valor mı́nimo da função χ2 obtida no processo de minimização da Eq. (5.2).

No caso de apenas um único parâmetro livre, para um intervalo de confiança de 68% temos

∆χ2 = 1 [14].

O valor de χ2
min e o número de graus de graus de liberdade (dof) ν, que na situação em que

temos um conjunto com N medidas e M parâmetros livres vale N −M , podem ser utilizados

para encontrar o p-value, que mede a qualidade do ajuste.

5.1 Resultados

Os dados experimentais que devem satisfazer a Eq. (5.1) são aqueles cuja energia total de

centro de massa
√
s está suficientemente longe de ressonâncias. Então, para determinar αs(s)

na região de Nf = 3 utilizamos os dados recentes do experimento KEDR [15] no intervalo

1.8 GeV .
√
s . 3.0 GeV, enquanto para Nf = 4 e 5 fizemos uso dos dados disponibilizados

pelo PDG [16] nos intervalos 6.0 GeV .
√
s . 8.0 GeV e 11.0 GeV .

√
s . 25.0 GeV,

respectivamente. Todos os dados foram considerados independentes, pois a correlação entre os

mesmos não está publicada. As incertezas foram obtidas através da soma quadrática entre os

erros sistemáticos e estat́ısticos disponibilizados.
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Figura 6: Resultados dos ajustes encontrados via
minimização do χ2. A linha tracejada (rosa) re-
presenta o valor teórico previsto em ordem α0

s

dado na Eq. (3.13), a linha sólida (vermelho) re-
presenta a curva obtida no ajuste e a hachura
representa o erro associado em 1σ.

Para realizar os ajustes consideramos a mi-

nimização (numérica) da Eq. (5.2) com os valo-

res teóricos dados pela Eq. (5.1). Deixamos

αs(µ1) como parâmetro livre, enquanto fixa-

mos µ1 = mτ (1.776 GeV) para a região de

Nf = 3, µ1 = 4 GeV para a região de Nf = 4 e

µ1 = mZ (91.19 GeV) para a região de Nf = 5.

As incertezas σ referentes ao processo de ajuste

foram estimadas com o aux́ılio da Eq. (5.3):

como há apenas um único parâmetro livre, basta

encontrarmos (numericamente) as soluções de

χ2(α̂s(s) + σ)− χ2
min = 1, (5.4)

sendo α̂s(s) o valor do acoplamento obtido no

ajuste. É importante ressaltar que deste modo as

incertezas para αs(s) são puramente estat́ısticas

— não estamos levando em conta os erros asso-

ciados ao truncamento da série pertubativa, por

exemplo.

As curvas obtidas nos ajustes são compara-

das com os dados experimentais na Fig. 6, en-

quanto os valores encontrados para αs(s) estão

apresentados na Tab. 1. O valor do p-value

nas regiões de Nf = 4 e 5 diz que ambos os

ajustes são razoáveis, enquanto o p-value para

a região de Nf = 3 nos permite dizer que o

ajuste é excelente. Fica evidente na região de

Nf = 3 a necessidade das correções previstas

pela QCD para descrever de forma rigorosa o

observável R(s), já que nessa região de ener-

gia as correções são da ordem de 10%. Para as

regiões de Nf = 4 e 5 as correções de αs(s) são

menores, mas ainda assim é posśıvel verificar

dois conceitos não triviais da QCD: o número de

cores Nc = 3 para os quarks e a carga elétrica

fracionada.
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Tabela 1: Valores obtidos para αs(s) nas regiões de Nf = 3, 4 e 5.

Nf αs(s) χ2
min/ν p-value

3 αs(mτ ) = 0.414+0.055
−0.053 3.272/12 0.99

4 αs(4 GeV) = 0.173+0.041
−0.039 27.818/18 0.06

5 αs(mZ) = 0.120+0.014
−0.016 27.193/18 0.08

Os valores obtidos para αs(s) por si só já representam uma verificação quantitativa da

liberdade assintótica, mas para realizar uma comparação entre os ajustes devemos evoluir os

resultados até uma escala de energia comum. (Como estamos lidando com a acoplamento

forte em apenas um loop, podemos evoluir os resultados obtidos para αs(s) sem impor relações

de desacoplamento nos limiares de criação de novos sabores [17].) O resultado gráfico desta

evolução está na Fig. 7, enquanto na Tab. 2 temos uma comparação entre os valores evolúıdos

até a escala
√
s = mZ e o valor médio global já fornecido na Eq. (4.14).
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Figura 7: Evolução do valores de αs(s) obtidos nos ajustes. As três curvas são comparadas em (a) e
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Tabela 2: Comparação dos ajustes na escala mZ . Todos os valores são compat́ıveis em no máximo 2σ.

Nf = 3 Nf = 4 Nf = 5 Média mundial

αs(mZ) 0.124+0.005
−0.005 0.101+0.013

−0.014 0.120+0.014
−0.016 0.1181± 0.0011

Como os valores encontrados para αs(mZ) são todos compat́ıveis e estat́ısticamente indepen-

dentes, realizamos uma média ponderada e encontramos um valor médio para o acoplamento

forte na escala de energia do bóson Z dado por

αs(mZ) = 0.1211± (0.0044)stat, (5.5)
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Figura 8: Compilação geral dos dados experimentais para R(s) fornecidos pelo PDG [16]. Cada salto
nas curvas ocorre em

√
s ≈ 2mf . A linha tracejada (vermelha) representa o valor teórico para R(s) em

ordem α0
s fornecido pela Eq. (3.13) e a linha sólida (azul) representa a curva em ordem αs obtida pelos

ajustes. A hachura determina o erro associado em 1σ.

onde aqui reforçamos que a incerteza é puramente estat́ıstica. O nosso resultado é compat́ıvel

dentro de 1σ ao valor médio mundial fornecido pelo PDG.

Por fim, na Fig. 8 mostramos a compilação geral dos dados experimentais para R(s)

concomitantemente com a curva teórica em ordem α0
s — prevista pela Eq. (3.13) — e a curva

em ordem αs obtida pelos ajustes. Algumas das ressonâncias presentes estão indicadas. Nos

limitamos a colocar a curva teórica apenas para
√
s & 1.5 GeV, visto que para energias abaixo

disso o alto valor para αs(s) torna impreciso o cálculo pertubativo na QCD, além da presença

de várias ressonâncias.

6 Conclusão

Neste trabalho estudamos o observável R(s) relacionado à seção de choque inclusiva de produção

de hádrons em colisões e+e−. Exploramos tanto a sua formulação teórica quanto uma abordagem

fenomenológica para a determinação do acoplamento forte em regiões com Nf = 3, 4 e 5.

De ı́nicio, detalhamos a relação entre o observável e a parte imaginária da função Πh(s),

que representa as correções da QCD ao propagador do fóton, por meio do teorema óptico.

Apresentamos o cálculo de Πh(s) a um loop com o intuito de determinar explicitamente a

dependência de R(s) na energia em ordem α0
s, incluindo a correção devido às massas dos quarks.

Isso exigiu explorar algumas das principais técnicas matemáticas necessárias para calcular

diagramas que envolvem loops. Contornamos a divergência ultravioleta utilizando o processo

de regularização dimensional, e com ele foi posśıvel introduzir os conceitos de regularização e

renormalização, que comumente são necessários em QFT.
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Introduzimos os conceitos do grupo de renormalização e da função β da QCD, possibilitando

a obtenção de uma forma fechada para a evolução de αs(s) a um loop. Assim, no que rege a

abordagem fenomenológica, aliamos a descrição teórica para R(s) em ordem αs com os dados

experimentais para extrair valores para o acoplamento forte em diferentes escalas de energia. A

análise estat́ısica foi feita numa abordagem frequentista minimizando-se a função χ2. Obtivemos

α
Nf=3
s (mτ ) = 0.414+0.053

−0.055, α
Nf=4
s (4 GeV) = 0.173+0.041

−0.039 e α
Nf=5
s (mZ) = 0.120+0.014

−0.016, e com isso

conseguimos verificar de forma quantitativa a celebrada liberdade assintótica prevista pela

função β da QCD. Ao evoluir os resultados até a escala de energia do bóson Z encontramos um

valor médio para o acoplamento forte dado por αs(mZ) = 0.1211± 0.0044, que é compat́ıvel

dentro de 1σ com o valor médio global calculado pelo PDG.

A abordagem do observável R(s) deste trabalho exemplificou, ainda que de forma simplificada,

o esforço global empreendido por diversos grupos de pesquisa na determinação precisa e

competitiva de parâmetros livres do Modelo Padrão. No âmbito da seção de choque e+e− →
(hádrons), a predição teórica é conhecida atualmente até ordem α4

s (5 loops), onde os valores

das correções hadrônicas ao propagador do fóton já são comparáveis às correções eletrofracas em

primeira ordem. A qualidade dos dados para e+e− → (hádrons) permite, além do tratamento

ponto a ponto de R(s) que realizamos neste trabalho, explorar o uso de regras de soma,

permitindo assim determinações ainda mais precisas para αs(s) [18]. No artigo de revisão

sobre QCD da Ref. [8] são citados alguns dos demais processos trabalhados na comunidade

cient́ıfica para a extração de αs(s), como por exemplo o decaimento hadrônico do τ [19] e QCD

na rede [20].

A f́ısica de precisão desempenha papel fundamental no desenvolvimento da f́ısica de part́ıculas.

Com a dimuição das incertezas é posśıvel detalhar cada vez mais posśıveis desvios da teoria, e

assim contribuir para a busca por f́ısica Além do Modelo Padrão.
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