31 de Outubro de 2019

Trabalho de Conclusao de Curso: Monografia
Bacharelado em Fisica

Liberdade Assintética na Secao de Choque
ete” — (hadrons)

Marcus Vinicius G. Rodrigues

Orientador: Prof. Dr. Diogo Boito

Universidade de Sao Paulo

Instituto de Fisica de Sao Carlos

Depto. de Fisica e Ciéncia Interdisciplinar
Grupo de Fisica Tedrica

Resumo: O célculo da se¢ao de choque ete™ — (hddrons) é um dos principais
testes da teoria das interagoes fortes, a Cromodinamica Quéantica (QCD). A liber-
dade assintética, prevista pela funcao 8 da QCD, que garante que o acoplamento
forte diminui de intensidade para energias mais altas, é um ingrediente crucial
neste céalculo. Neste trabalho testamos a liberdade assintética da QCD com a
evolucao de o a um loop utilizando dados reais e recentes para a secao de choque

o(ete” — hadrons).



Sumario

(1 Introducao| 2

12 Construcao do observavel R(s)| 6

13 Calculo de II(s) a um loop|

B.1 Tamitede m=0. . . . . . . . . . . 9
B2 Casomassival . . . . . . . . 10
4 O processo de renormalizacao e a funcao 8 da QCD)| 11
15 Determinacao de as(s) a um loop| 14
.1 Resultadod . . . . . . . 15
6__Conclusaol 18

1 Introducao

A fisica de particulas elementares estuda a matéria no seu nivel mais fundamental, nas menores
escalas de comprimento. Podemos dizer que este ramo da fisica se iniciou no final do século
XIX com a descoberta do elétron por J. J. Thomson e se fortaleceu ainda mais na virada para o
século XX, principalmente com a descoberta do féton nos diversos experimentos que colocavam
em xeque a Mecanica Classica e levaram ao nascimento da Mecanica Quantica.

Qualquer teoria para as particulas elementares deve ser consistente com a Relatividade
Especial. A combinacao da Mecanica Quantica com a Relatividade Especial levou Dirac a
equagao hoje conhecida como equac¢do de Dirac, que descreve particulas de spin-1/2, e ao
combinar com a Teoria Cléssica de Campos entramos no ramo da Teoria Quantica de Campos
(QFT). A quantizagao do campo eletromagnético, necessaria para descrever o efeito fotoelétrico,
trouxe um novo formalismo para a interacao entre as particulas. Os quanta dos campos sao
interpretados como particulas com nimeros quanticos bem definidos, e as interacoes entre elas
sao mediadas por outros campos, cujos quanta também sao particulas. Dessa forma, podemos
pensar na interagao entre dois elétrons, por exemplo, como sendo consequéncia da troca de
fotons.

O primeiro grande triunfo dessa nova teoria veio com a Eletrodinamica Quantica (QED) [1],
que descreve a interacao de elétrons e pésitrons com o campo eletromagnético quantizado. O
sucesso do programa de renormalizacao — desenvolvido por Feynman, Schwinger, Tomonaga,
Dyson e outros — para lidar com os infinitos que surgiam na teoria possibilitou calculos com

precisao muito maior, levando a QED a um acordo espetacular com os experimentos.



Esse novo formalismo para a interacao entre as particulas trouxe uma nova abordagem para
um problema existente no modelo atomico: a estabilidade do nicleo. Para compensar a repulsao
Coulombiana entre os protons é necessario que exista uma outra forca entre os néutrons e
protons capaz de estabilizar o nicleo. Essa é a chamada forca nuclear forte e sua primeira teoria
quantitativa veio com Yukawa, que propos a existéncia de uma particula mediadora massiva (da
ordem de 300 vezes a massa do elétron), tornando assim o alcance da forga extremamente curto

— da ordem do raio do nucleo atomico. De fato, uma particula com as propriedades previstas
por Yukawa foi encontrada em 1947, em experimentos envolvendo raios césmicos, por César
Lattes e seu grupo [2].

O aumento da precisao experimental em conjunto com estudos mais detalhados revelaram
um grande nimero de novas particulas com diferentes caractereristicas — modos de decaimento,
carga, massa, etc. O modelo para explicar as propriedades dessas diversas particulas veio em
1964, quando foi proposta a existéncia dos quarks. Os quarks sao particulas elementares de
spin-1/2 e carga elétrica fracionaria que, quando combinados, formam os hddrons. O préton,
por exemplo, passou a ser visto como um estado ligado entre dois quarks u e um quark d (os
diferentes tipos de quarks sao chamados de sabores). Uma outra importante caracteristica dos
quarks estd na existéncia de trés cargas de cor, e portanto héddrons como o AT (uuw) nao
apresentam violagdo no principio da exclusao de Pauli [3]. Assim como a QED representa a
interacao entre particulas com carga elétrica, que é mediada por fétons, a interacao forte atua
em particulas com carga de cor e possui o glion como mediador. A teoria de calibre que descreve
a interacado forte é a Cromodinamica Quéantica (QCD).

Apesar das diversas evidéncias experimentais para a existéncia de quarks, eles nunca foram
observados livres na natureza. A auséncia dessas observacoes é explicada pela hipotese do
confinamento de cor, que postula que objetos com carga de cor diferente de zero nao se propagam
como particulas livres, ficando confinados em estados singletos de cor, formando hadrons como o
préton e o néutron, por exemplo. Acredita-se que o confinamento de cor tenha sua origem no fato
do glion também possuir carga de cor. Em particular, a auto-interagao do glion é responsavel
pela evolugao peculiar do acoplamento forte como fungao da distancia: a intensidade da interacao
forte cresce com a distancia, o que é compativel com a ideia de confinamento, e tende a zero
para distancias curtas, representando a celebrada liberdade assintdtica do acoplamento [41/5].

O chamado Modelo Padrao (SM) da fisica de particulas, assim como a QED e a QCD, é uma
teoria de interagoes entre campos baseada em simetrias de calibre. O SM pode ser separado em
setores: a juncao da QED com a teoria das interagoes fracas — responsavel, por exemplo, pelo
decaimento beta do néutron — forma o setor da Teoria Eletrofraca; ja o setor das interacoes

fortes que descreve particulas com carga de cor — quarks e glions — é representado pela QCD.



No que rege o setor das interacoes fortes, tanto as massas dos quarks quanto o acoplamento
forte o, — andlogo & constante de estrutura fina a,, = €?/4whc ~ 1/137 — sao parametros
livres. O conhecimento preciso desses parametros é portanto um ingrediente fundamental em
testes de consisténcia da teoria, bem como um dos desafios principais nos calculos de precisao
necessarios para os colisores de particulas. Entretanto, o confinamento dos quarks torna a
extracao desses parametros fundamentais uma tarefa complexa. Precisamente por este fato, nao
sao observaveis fisicos no sentido estrito, e dependem de convencoes relacionadas ao procedimento
de renormalizacao da teoria.

O procedimento adotado para a determinagao de «a; (e da massa dos quarks) segue, grosso
modo, sempre a mesma estratégia geral: calcula-se no estado da arte da QCD algum observavel
da teoria que possa ser medido com razoavel precisao. As massas dos quarks e a sao entao
tratados — dentro de uma definicao precisa — como parametros livres da previsao tedrica;
da comparacao com os resultados experimentais é possivel extrair esses parametros através de
um procedimento estatistico. As predicoes tedricas, em geral, sao obtidas através dos calculos
de diagramas de Feynman, que sao representacoes pictéricas de expressoes matematicas que
descrevem amplitudes em teorias de campos. As regras de Feynman para o calculo de diagramas
dependem das interagdes fundamentais presentes na teoria [3].

Neste trabalho estamos interessados em realizar determinagoes para o acoplamento forte.
Para isso trabalharemos com uma das principais quantidades mensuraveis da QCD: a se¢ao
de choque inclusiva de producao de hédrons em colisoes elétron-pésitron, o(ete™ — hddrons).
Usualmente, nestes estudos é utilizado o observéavel R(s), definido porﬂ

o(ete” — v* — hadrons)  o(ete” — v* — hadrons)

R(s) = o~ 1.1
(s) a2, /3s olete™ — putp~) ’ (1)

onde a se¢ao de choque da producao da muonica é calculada no limite sem massa e em ordem
arvore [3], cujo diagrama de Feynman estd apresentado na Fig. A energia total do centro de
massa do sistema é dada por /s, sendo s a massa invariante do par ete™.

Em energias abaixo da escala eletrofraca, tanto a producao de muons quanto a de quarks e

glions é dominada por um féton intermedidrio, e portanto os quarks e os mions acoplam-se a

[©N

corrente eletromagnética. Por conta da dualidade quark-hddron, o numerador da Eq.
descrito pela secao de choque ete™ com quarks e glions no estado final. Devido ao confinamento
de cor, este célculo da secao de choque é pouco afetado por efeitos de longa distancia, responsaveis
pelo complexo processo de hadronizacao, a nao ser nas proximidades de ressonancias e, portanto,
para energias suficientemente altas, o calculo feito na QCD deve corresponder a secao de choque

observada experimentalmente.

INeste trabalho utilizamos o sistema natural de unidades & = ¢ = 1.



Espera-se que em primeira aproximacao a secao de choque
da producao hadronica — Fig. — seja analoga a da
producao muonica. Devemos apenas multiplicar pelo nimero
de cores N, para os quarks e realizar a transformacao ae,, —
Q fQtem,, sendo Qs a carga elétrica do quark de sabor f (em

unidades de e). Portanto,

+ - , 2 471—0[57%
o q o(eTe” — hadrons) =~ N, E Q5 5 ) (1.2)
s
f

onde a soma é feita sobre todos os sabores ativos até a

energia /s, isto é, consideramos todos os sabores com massa

et a my S /s/2.
(b) eTe” = qq Na prética, com o auxilio do teorema O6ptico [6], para

Figura 1: Diagramas de Feynman calcular a secao de choque o(ete” — hadrons) basta calcu-
em ordem &rvore para colisdes ete™.
Em (a) temos a produgao mudnica
e em (b) a produgdo de hadrons
através do par qq (quark-antiquark). de modo que o observavel R(s) pode ser descrito de forma

larmos a parte imaginaria das contribuicoes de estados inter-

medidrios hadronicos no espalhamento frontal ete™ — ete™,

pertubativa em termos de uma fungao escalar II,(s) que

representa as correcoes da QCD ao propagador do féton, ou
seja, traz as correcoes devido a producoes e aniquilagoes de pares quark-antiquark a partir do
féton intermedidrio, e as trocas de glions entre eles. Mais precisamente, a funcao II,(s) é o
termo escalar das amplitudes dos diagramas de corregoes hadronicas na polarizagao do vécuo,
definida de forma a ser invariante de Lorentz.

Para energias distantes de ressonancias, a relagdo entre o observavel R(s) e Iy (s) é [7]

R(s) = 162—27TImHh(s +10), (1.3)
sendo ¢0 um indicativo de que devemos tomar a parte imaginaria acima do eixo realﬂ Diferentes
sabores de quarks contribuem para os estados hadronicos, entao é fundamental que todos os
sabores ativos para uma dada energia total de centro de massa sejam considerados.

Na regido de energia que se trabalha com R(s) as corregoes devido & QCD prevalecem, pois
nessa regiao o acoplamento forte admite valores a;(s) 2 0.1, enquanto o acoplamento da QED
vale cerca de 1/137 [8]. Isso implica em que as corre¢oes dominantes na expansao pertubativa

de R(s) sao em poténcias de a,(s) [8], isto é,

R(s) = N.3° Q2 (1+0‘87§3> +> +O(T—f) +O(A4‘§§D), (1.4)
f

2A transformacdo s — s+ 140 estd relacionada & prescrigao de Feynman ao escrever o propagador da teoria [6].



onde o termo O(m/s%) representa a corregio devido as massas dos quarks e o termo O(A§cp/s%)
as contribui¢oes que fundamentalmente nao sdo pertubativas. A expressao tedrica para R(s)
escrita na forma da Eq. ¢ obtida calculando a parte pertubativa com my = 0 — no chamado
limite quiral.

Varios aspectos da QCD sao testados em uma andlise quantitativa de R(s), a saber a
carga elétrica fracionaria, o nimero de cores e o acoplamento forte. Na Sec. 2 deste trabalho
discutiremos a deducao da Eq. e na Sec. 3 o calculo de R(s) em ordem o através do
diagrama de um loop e usando o teorema 6ptico, incluindo a correcao devido as massas dos
quarks. Em seguida, iremos explorar uma abordagem mais fenomenologica do observavel a
fim de se extrair o valor do acoplamento forte a um loop em diferentes escalas de energia. Na
Sec. 4 discutiremos em algum detalhe a funcao g da QCD, que preve a liberdade assintética de
as(s). Por fim, com os dados experimentais para R(s) e sua formulagao tedrica até ordem ay,
na Sec. 5 derterminaremos o valor de a,(s) em regides com Ny = 3,4 e 5, sendo Ny o ntimero
de sabores ativos. A anélise estatistica serd feita numa abordagem frequentista minimizando-se

a funcao y2.
2 Construgao do observavel R(s)

O teorema Optico é uma consequéncia direta
da unitariedade da matriz de espalhamento na
QFT [6]. Com ele, é possivel relacionar a parte
imaginaria da amplitude M(s) do diagrama da
Fig. [2| com a soma de todas as contribuicoes de

particulas em estados intermediarios no espalha-

mento frontal, j4 que a descontinuidade no eixo
real da amplitude para s > 4m? (limiar de criagao e et
de duas particulas de massa m) é fruto da pos- Figura 2: Diagrama de Feynman para o espalha-
sibilidade de serem criadas particulas na camada mento frontal ete™ — ete™. A bolha hachurada
de massa. De forma mais especifica, a relacao estd relacionada a fungao Iy (s).

entre ImM e a segao de choque total oy (ete™)

do espalhamento ete™ para qualquer estado de

particulas permitido é
ImM(ete™ — ete™) = 2v/5|pem]| ior(eTe), (2.1)

onde P € 0 momento de um dos elétrons incidentes no CM. No limite quiral temos que

|Pem| = V/5/2, e portanto

ImM(ete™ — ete™)
S .

owt(ete) = (2.2)



Neste caso, usando regras de Feynman a amplitude M do diagrama da Fig. [2[é dada por [6]

M = [1 () (—ier” ) ()] = G (@) = 20 ) (i e ()], (2)
onde u e v sao os spinores de Dirac associados a particula e a anti-paticula, 7’s sao as matrizes
de Dirac, g,, ¢ a métrica do espaco de Minkowski, p; sao os quadri-momentos das particulas
externas (os quadri-momentos nao se alteram no espalhamento frontal), ¢ = (p; + p2) é o
quadri-momento do féton intermediario e I1#7(g) é o tensor de polarizacao associado a bolha
hachurada na Fig. , que leva em conta todas as corregdes ao propagador do féton (nao sé as
hadronicas). Por conta da identidade de Ward [6] ¢, 11" (¢) = ¢,11""(q) = 0 e, consequentemente,
podemos escrever

1 (q) = (¢"¢" — ¢*¢"")11(), (2.4)
onde a funcao I1(¢?) é o termo puramente escalar na polarizagio do vacuo. O termo g'q”
resulta em zero quando contraido com as correntes externas do elétron, entao apenas o fator
proporcional a g*” sobrevive. Logo,
_ (—ie)? _ _ .
M = [0 (pa) " (p2)] [0 (2) 7" (p1) (i1 (s)), (2.5)

sendo que aqui ja utilizamos o fato de que s = ¢
Como nao estamos interessados em estados de spin especificos, somamos sobre todas as
possibilidades possiveis e utilizamos as propriedades de completeza dos spinores [3]. No fim,

encontramos que o valor médio da amplitude é dado por

(M) = 2 Z M = (s). (2.6)

Finalmente, se considerarmos apenas as corre¢oes hadronicas em I1(s), deduzimos que a se¢ao
de choque da producao de hadrons é dada por

2
o(ete” — hadrons) = 6—ImHh(s), (2.7)
s

onde IT},(s) representa apenas as corregoes hadronicas ao propagador do féton.
Da Eq. (2.7) na definigdo de R(s) concluimos que

127
R(s) = —5Imll (s +i0), (2.8)
e
onde aqui realizamos a transformagao s — s + ¢0. Essa equacao nos mostra que para obter uma
representagao téorica para o observavel R(s) basta calcularmos a parte imaginaria das corregoes
da QCD ao propagador do féton.

Agora que deduzimos a Eq. ([1.3) é interessante realizar o calculo de II,(s) a um loop para
0

s

obtermos de forma explicita a dependéncia em s do observéavel R(s) em ordem «



3 Calculo de II(s) a um loop

Para obtermos a parte imaginaria de II,(s) a um loop precisamos calcular a amplitude do
diagrama da Fig. . Para este diagrama, considerando um quark de carga () (em unidades de e)
e massa m, o calculo da amplitude é essencialmente igual ao da polarizacao do vacuo em ordem
dominante na QED multiplicado por N.Q?. Portanto [7]
T B e LS
’ e\l - —m? + 0] — m? + i0)

onde p = p"v,. O indice 1 indica que o célculo esté sendo feito a um loop.

(3.1)

A integral para TI}" (q) diverge para valores de p?
grandes — divergéncia ultravioleta. Visto que isso
¢é consequéncia da dimensao D = 4 do espaco de
Minkowski, contornamos a divergéncia com o processo

de regularizacao dimensional |10], que consiste em

realizar a integral em D = 4 — 2¢ dimensoes (no
final dos cédlculos devemos tomar o limite € — 07).

Para manter a dimensao de I}’ devemos introduzir Figura 3: Diagrama de Feynman em um

um parametro global ;2¢ [7], sendo y uma escala de 100p para a polarizagao do vécuo. Produgao
. e . . - e aniquilacao do par ¢q.
energia arbitraria. Assim, em D dimensoes,

(p = g +m)y" (p+m)y” b6

UV . e 2 2¢ de r
M) = ~(@e)n Nc/ enp { [(p — @) — m? + 0] (p? — m? + 40)

Contraindo os dois lados desta equagao com g, e utilizando a Eq. (2.4) obtemos

—ip%Q?%e? N, / dPp  Te{(p — ¢ +m)y*(p +m)v.}
(D —1)(¢*+1i0) J (2m)P [(p — q)* — m? +i0](p?> — m? +i0)’

M1 (g% +0) = (3.3)

onde o termo (D — 1) do denominador surgiu da relagdo de contracao da métrica g,,g"" = D.
O traco e as propriedades de contragao das matrizes v dependem da dimensao D = 4 — 2¢

considerada nos célculos [6]. Em especifico para o numerador da Eq. (3.3)) encontramos que
Te[(p + m)yu(p — ¢ + m)y"] = —4(D — 2)p - (p — q) + 4Dm>. (3.4)

Para tratar o denominador no integrando de Iy, 1 (¢? +40) é conveniente utilizar os pardmetros

de Feynman [6], que consiste em realizar a transformacao

1 _/1 dx
(2 —m? +00)[(p — q)> =m2 +i0] Sy {z[(p — @) —=m?] + (1 —2)(p> — m?) +i0}2’

Reescrevendo a Eq. (3.3) jd com o resultado do trago, com um parametro de Feynman e em

(3.5)

termos da variavel [ = p — xq, ficamos com



_ ‘Nc 2,,2€ 1 le
Hh71(q2 + 7/0) — t (Qe) :u ) / dl‘/
0

(D —1)(¢?>+10 (2m)P
. (3.6)
« —4(D = 2)(I* + A) + [4(D — 2) + 4DJm? + (termos lineares em )
CEFNE |
onde A é definido por
= —[z(1 — z)(¢* +i0) — m?]. (3.7)

Por simetria, os termos lineares em [ resultam em zero quando integrados em todo o espaco.
Algumas simplificacoes para a integral surgem quando passamos a variavel de integragao para o
espaco Euclideano, pois assim poderemos utilizar coordenadas esféricas D—dimensionais. Para
isso, realizamos uma rotagdo de Wick [6], que consiste em rotacionar apenas o eixo temporal [°

para uma dire¢ao temporal imagindria, isto é, I — lg e [° = il%. Assim,

/ /leE —E4+ A
1q +ZO (1% + A)?

NCQ2€2 M?e leE 1
4(D — 2) + 4D
D1t )+ m/ / D2+ A2

1 (¢* +i0) = —4N.Q% 2

(3.8)

Resolvendo as integragoes em [g utilizando coordenadas esféricasﬂ, obtemos que para D = 4 — 2¢

L BN.Q%? : L AL A
Hh,l(q2 + ZO) == —m<4ﬂ'ﬂ2) P(G)(/O dSCAl — m2/0 dxA > (39)

As integrais em x restantes dependem da massa do quark. No caso m = 0 podemos resolvé-las
analiticamente em termos de fungoes I, e portanto teremos um resultado capaz de evidenciar o
poder da regularizacao dimensional em tornar explicita a divergéncia. Deste modo, primeiro
vamos realizar os célculos no limite quiral e obter o valor para R(s) em primeira aproximagcao;

em seguida trataremos da correcao devido as massas.
3.1 Limite m =0

No limite m = 0 o segundo termo da Eq. (3.9) resulta imediatamente em zero. Para o primeiro
termo, a integracao em x pode ser escrita em termos de fungoes I' com o auxilio da funcao beta
de Eulelﬂ Assim, para m = 0,

/ dz A7 = (—¢% — i0)" FQF_(Z)_F(;E)_ 24 (3.10)

0

Substituindo essa expressao na Eq. (3.9)) e expandindo em torno de € = 0 encontramos

2e? —¢>—i0\ 5
1 (g% +i0) =0 = 1;2 5 L — g + In(47) — ln(%) gt O(e)], (3.11)

onde vg & 0.577 é a constante Gamma de Euler.

3Integrais desse tipo podem ser encontradas na Ref. [6].

4A funcio beta de Euler é B(u,v) = fol dz 24711 —2)v" 1 = FF(&)JEES)




A Eq. possui a divergéncia escrita de forma explicita no fator 1/e, e portanto dizemos
que a expressao esta reqularizada. Note que ainda temos um parametro de escala arbitrario p
que surgiu no processo de regularizagao. Trataremos deste fator mais adiante ao falar da funcao
£ da QCD.

Para encontrarmos o valor de R(s) em primeira aproximagao basta tomarmos a parte
imaginaria de II, 1 (¢* + 40)|,—o € somarmos sobre todos os sabores ativos — vide Eq. (L.3).

Como Im [In(—|z| — ¢0)] = —, concliimos que

R(s) = N. Y _ Q5. (3.12)
f

Visto que cada sabor f de quark torna-se ativo em /s & 2my, o resultado numérico para R(s)

0

em ordem o,

e no limite quiral é

2, /s<2x1.275GeV  (quarks u,d, s)
R(s)= ¢80 2x1.275</s S2x4.18GeV  (quarksu,d, s,c) (3.13)
T, Vs 22x418GeV  (quarks u,d, s, c,b)

onde aqui ja consideramos N, = 3. Os valores para as massas dos quarks foram extraidos do

Particle Data Group (PDG) [8] e estdo no esquema de renormalizacio MS.

3.2 Caso massivo

Para realizar os calculos com massa devemos considerar uma expansao em torno de € = 0 antes
mesmo do processo de integracao em x, ja que neste caso nao conhecemos as solugoes analiticas

das integrais. Ao expandirmos em série os integrandos da Eq. (3.9) ficamos com

1 1 1 1
/ de Al7¢ = / dz [A — Aln(A)e + O(€%)] e / de A~ = / dz [1 —In(A)e + O(€%)].
0 0 0 0
(3.14)
Logo a parte imaginaria de IIy, 1 (¢?) ¢ devido, até O(€?), aos logaritmos.
Dada a definigdo de A — Eq. (3.7) — e que Im [In(—|z|—10)] = —m, teremos uma contribuigao
para a parte imaginaria dos logaritmos apenas quando m? — z(1 — x)¢* < 0. Resolvendo essa
2 212 2
quarks no CM (a unitariedade da matriz de espalhamento implica que a parte imaginéria dos

desigualdade de 2° grau vemos que x € [2 — 13; 1 + %B], onde = ,/1— 4m? ¢ 4 velocidade dos

logaritmos é diferente de zero apenas para ¢> = s > 4m?, que é o limiar de criacao do par ¢q).

Portanto, até O(e?) temos

1 3+38 B3¢
Im{/ dxAl_e} = —e/ dz Alm In(A) = —er 5 (3.15)
o 14

1 3+38
Im{ / da:A_e} = e7r/ dz = enp. (3.16)
0 1 13

e, analogamente,



Por fim, utilizando as Eqs. (3.15)) e (3.16)) na Eq. (3.9) e tomando € — 01, concluimos que

N.Q?e? 4m?2 (1 N 2m2>.

1 —
127 q> q>

Im{HhJ(qQ - 2'0)} = (3.17)

Substituindo essa expressao na Eq. ([1.3]) e somando sobre todos os sabores ativos obtemos

4m? 2m> 6m 6
R(s)=N.) Q}\/1- T:f(lJr ?f>=NcZQ§(1—%>+O<%>. (3.18)
! f

Essa é a predicao tedrica para R(s) em ordem o incluindo a corregao devido as massas.

Nesta secao exploramos algumas das ferramentas ma-
tematicas necessarias para abordar os calculos de diagra- (0g99q%)
mas que envolvem loops. Para obter o valor de R(s) em
ordem v, é necessdrio realizar o calculo de I, (¢* + i0) a
dois loops, que inclui a troca de um glion na polarizacao
hadronica do vacuo — Fig. 4l Este célculo, que é apre-
sentado na Ref. [9], esté fora do escopo deste trabalho.
Iremos considerar o resultado em ordem o fornecido na
Eq. e os dados experimentais para realizar deter-
minagoes de a(s) a um loop. Para isso, antes devemos Figura 4: Diagramas de Feynman a
explorar o processo de renormalizacdo para o acopla- dois loops na QCD para a polarizacao
mento forte e encontrar qual a dependéncia explicita em hadronica do vécuo.

s para ag(s) a um loop.

4 O processo de renormalizacao e a funcao 3 da QCD

Tanto na QED quanto na QCD, quando realizamos calculos de diagramas que envolvem loops
precisamos lidar com integrais divergentes. Para obter quantidades fisicas finitas, precisamos
(i) regularizar as expressoes (isto é, tornar explicitas as divergéncias), (ii) reconhecer que as
particulas nao interagentes (nuas) na qual a teoria da pertubacao se basea nao sao as particulas
fisicas reais que interagem (as interagdes modificam as propriedades das particulas, como a
carga e a massa), e, por fim, (iii) devemos renormalizar a teoria ao relacionar as propriedades
das particulas fisicas com as das particulas nuas. Os infinitos originais da teoria aparecem nas
relagoes entre as quantidades fisicas e nuas. Essas relagoes, assim como as proprias particulas
nuas, nao sao observaveis |11].

Na Sec. [3| abordamos o processo de regularizacao dimensional para tratar o calculo de Iy (s)
a um loop. (Outro método de regularizacao bastante utilizado é o de Pauli-Villars, que esté
apresentado, por exemplo, nas Refs. [6,|11].) Na Eq. temos o exemplo de uma expressao

regularizada: a divergéncia ultravioleta ficou explicita no fator 1/¢, mas um fator de escala
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arbitrario p fol necesséario para corrigir a dimensao de IIj, ; ().

Enquanto o processo de renormalizagao é responsavel por absorver as divergéncias explicitas,
a equagao do grupo de renormaliza¢ao (RGE) impoe a independéncia de qualquer quantidade
fisica do parametro pu [7].

Quanto ao processo de renormalizacao a um loop, em especifico do acoplamento forte,
precisamos considerar 3 classes de diagramas a um loop: polarizacao do vécuo (4 diagramas),
corregao dos vértices (3 diagramas) e auto-energia dos quarks (1 diagrama). A natureza nao-
abeliana da QCD faz a quantidade de diagramas ser muito superior quando comparado a QED.
Os célculos desses diagramas podem ser encontrados, por exemplo, na Ref. [12].

Apéds considerar todos os diagramas que contribuem para a renormalizagao do acoplamento,

definimos a constante de acoplamento adimensional renormalizada por

ol = o, = 7 abe, (4.1)
onde Z, é uma constante de renormalizagao e
L™ = (Goare)* ¢/ (410), (4.2)

sendo gpare & constante de acoplamento nua que de fato apearece na Lagrangiana da QCD. Os
infinitos que surgem ao regularizar as expressoes dos diagramas sao todos absorvidos em Z,,.

No esquema de renormalizacio MS, a constante de renormalizacdo a um loop para a(s)
¢ [7]

s 1
Zo(s) =1+ 2 (s) ZM >+ 0(a?), (4.3)
m €
onde 1 1 1
S=-—yg+In(dn) e Z\ = —E(HNC — 2NVy). (4.4)
€ €

Para tratar a RGE, consideremos uma quantidade fisica F'(q, s, m), onde ¢ representa os
momentos externos, as(s) representa o acoplamento da QCD renormalizado e m a massa do
quark também renormalizada — tomemos apenas um sabor de quark para simplificar. Visto
que F(q, a5, m) é uma quantidade fisica, ndao pode depender do parametro de renormalizagao

arbitrario u. Essa imposicao se traduz matematicamente na RGE para F(q, as, m):

dF 0 0 0
:ua - ,LL@ - B(GS)a_% - ’V(Cls)ma—m F(q7 a57m) - 07 (45)

onde a,(s) = a,(s)/m e as fungdes B e v sio definidas poif]

dag
Blas) = —p i = Bra’ + Boa’ + ... (4.6)
dm
v(as) = _%d_ = mas + a2 +. (4.7)

5V4rias definicoes destas funcoes aparecem na literatura, com diferentes fatores de 7, sinais, etc. No caso da
fungao B, a definigdo tradicional tem o sinal oposto a nossa, de modo que p; < 0.
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A escolha do esquema de renormalizagao altera os valores para as(s) e da massa dos quarks,
mas de modo que qualquer quantidade fisica seja independente do processo de renormalizacao
utilizado. Todavia, na prética, como trabalhamos com expansoes perturbativas truncadas, sobra
uma dependéncia residual do esquema de renormalizacao.

A fungao § da QCD governa a equagao diferencial para o acoplamento forte como fungao
da escala s e, por conseguinte, se conhecemos os seus coeficientes somos capazes de determinar
qual a dependéncia de a4(s) com a energia. Atualmente esses coeficientes sdo conhecidos
(analiticamente) até 5 loops [13]. Como neste trabalho estamos interessados na evolucao de

as(s) a um loop, seguimos a Ref. [7] para obter o coeficiente f;.

Utilizando as Eqgs. (4.1)) e (4.6) temos que

d Z(;lalsaare Ma?are dZa 1 dals)are
L ( ) = - — . (4.8)

Plas) = —n—=g2 72 dup Za. dpu

Tratamos o primeiro com uma regra da cadeia para tornar a derivada em termos de as e

utilizando a definicao da prépria funcao g da QCD, enquanto que para segundo termo utilizamos

a Eq. (4.2). Assim, | 4z,

ﬁ(QS) |:1 * aSZ_a das

Essa ultima equacao ¢é geral e independe da quantidade de loops considerados no processo

} = %ea,. (4.9)

de renormalizacao. Todavia, para dar continuidade devemos utilizar a Eq. (4.3]) que representa

a constante de renormalizacao em apenas um loop. Logo,

Zd Je+ O(ay)
(Bra + ... ){1 + as L IOy O(az)] } = 2¢as. (4.10)

Realizando uma expansao em torno de € = 0 (nesse limite é — ¢), comparando os termos de

O(as) e utilizando o valor de 7 dado na Eq. 1’ conseguimos obter o coeficiente f;:
1
B =—-2Z0 = 6(11Nc — 2Ny). (4.11)

Para encontrar os demais coeficientes da funcao 8 é necessario levar em consideragao mais loops
no processo de renormalizagdo para o(s).
Agora que temos em maos o coeficiente 5; podemos determinar a dependéncia de ay(s) a um

loop com a energia. Considerando apenas um loop na Eq. (4.6)), isto é, fixando ;52 = 0, temos

l/asw)% _ _/md_“ (4.12)
B Jawu) 9 wo M

e ao realizar as integrais encontramos

O‘S(Nl)
[1— 2P (11N, — 2Np)In&]

as(pg) = (4.13)
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r (fm)
A Eq. (4.13) representa a evolugao 107! 1072

Curva com as(2 GeV)=0.4

do acoplamento forte a um loop, su-

pondo conhecido o acoplamento o (1) de referéncia e Nr=3

. . 0.4 Curva com as(4 GeV)=0.2
em uma escala de energia ;. Visto —'~ de referéncia e Ny =4
que na QCD temos N, = 3 e o nimero ___ Curva com a5(90 GeV)=0.1

de referéncia e Nr=5

de sabores ativos ¢ Ny < 6, o termo
(11N, — 2Ny) é positivo, e como con-
sequéncia imediata a(p9) decresce de
forma logaritmica e tende a zero no
limite o — 00, conforme mostrado na
Fig.[5l Essa é a celebrada liberdade as-

sintotica da QCD, que rendeu o Prémio

Nobel de Fisica de 2004 para David Figura 5: Curvas para as(s) conforme previstas pela

J. Gross, Hugh D. Politzer e Frank Eq. (4.13). Para encontrar a dependéncia do acoplamento

Wilczek [4L5]. Além disso, no sistema com a distancia basta saber que r = % ~ w. Aqui

a importancia estd apenas na caracteristica assintética da
curva, nao nos valores de referéncia (as determinacoes de
; € portanto  yalores de referéncia serdo discutidos na Sec. .

o acoplamento possui um crescimento

natural de unidades que trabalhamos,
1

[energia] = [distancia]~
logaritmico com a distancia.

Para determinar a evolugao de as(s) podemos utilizar tanto um valor de referéncia a(pu1)
quanto a escala de energia Aqgcp (= 200 MeV no esquema MS [8]) para qual o acoplamento
forte diverge. Por convengao, utiliza-se como referéncia o valor de a;(s) na massa do béson Z,

cujo valor médio mundial calculado pelo PDG é [§]

as(mz) = 0.1181 £ 0.0011. (4.14)

O resultado numérico para o acoplamento forte nao pode ser previsto pelo SM, e portanto
esse parametro fundamental deve ser determinado através de descrigoes tedricas rigorosas (como
por exemplo da se¢ao de choque ete™ — (hddrons)) aliadas a dados experimentais. Agora que
temos em maos a evolucdo de as(s) a um loop podemos fazer uso do observavel R(s) estudado

neste trabalho para determinar valores de referéncia em regioes com Ny = 3,4 e 5.

5 Determinacao de a;(s) a um loop

Aqui vamos extrair valores de referéncia para as(s) a um loop utilizando a predi¢ao tedrica

para R(s) até ordem oy sem considerar a corregao devido as massas e as contribui¢oes nao

pertubativas. Das Egs. (1.4]) e (4.13) ficamos com
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R(s)=N.} Q§{1 + O‘S;’“) — = } (5.1)

[1— =2 (11N, — 2N;)In 2 |

sendo que N, = 3 e Ny depende da regiao de energia a ser trabalhada. Para determinar o valor
do acoplamento utilizamos dados experimentais do observavel e realizamos uma minimizagao da
fungao x? considerando ay(p1) um parametro livre e y; uma escala de energia arbitraria.

O procedimento estatistico adotado é o seguinte: consideremos um conjunto de N medidas
independentes y; em pontos z; conhecidos, e vamos pressupor que y; ¢ distribuido de forma
Gaussiana com variancia conhecida o? e média p(z;; @), sendo @ um vetor cujas entradas sdo os
parametros da teoria a serem estimados. O objetivo principal é encontrar os valores para os

parametros que minimizam a fungao [14]

V2(0) = zN: (yi — ug(;si; 9))27 (5.2)
i=1 i

que mede a distancia entre os dados e a teoria. Aqui nao estd sendo levado em conta a correlagao
entre os dados, de modo que a matriz de covariancia é simplesmente diagonal.

As incertezas associadas ao ajuste podem ser estimadas com o auxilio da funcao Ay? definida
por

AX*(8) = x*(8) — Xiuin: (5.3)

onde X2, é o valor minimo da fungdo x? obtida no processo de minimizagio da Eq. (5.2).
No caso de apenas um unico parametro livre, para um intervalo de confianca de 68% temos
Ax? =1 [14].

O valor de x?2,;, e o ntimero de graus de graus de liberdade (dof) v, que na situagao em que
temos um conjunto com N medidas e M parametros livres vale N — M, podem ser utilizados

para encontrar o p-value, que mede a qualidade do ajuste.

5.1 Resultados

Os dados experimentais que devem satisfazer a Eq. sao aqueles cuja energia total de
centro de massa /s estd suficientemente longe de ressonancias. Entao, para determinar «(s)
na regiao de Ny = 3 utilizamos os dados recentes do experimento KEDR [15] no intervalo
1.8 GeV < /s < 3.0 GeV, enquanto para Ny = 4 e 5 fizemos uso dos dados disponibilizados
pelo PDG [16] nos intervalos 6.0 GeV < /s < 8.0 GeV e 11.0 GeV < /s < 25.0 GeV,
respectivamente. Todos os dados foram considerados independentes, pois a correlagao entre os
mesmos nao esta publicada. As incertezas foram obtidas através da soma quadratica entre os

erros sistematicos e estatisticos disponibilizados.
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Figura 6: Resultados dos ajustes encontrados via
minimizacdo do x2. A linha tracejada (rosa) re-
presenta o valor teérico previsto em ordem «

dado na Eq. (3.13)), a linha sélida (vermelho) re-
presenta a curva obtida no ajuste e a hachura

(c) Regiao de Ny =5

representa o erro associado em 1o.

Para realizar os ajustes consideramos a mi-
nimizacao (numérica) da Eq. com os valo-
res teodricos dados pela Eq. . Deixamos
as(py) como parametro livre, enquanto fixa-
mos i1 = m, (1.776 GeV) para a regiao de
Ny =3, 1 = 4GeV para a regiao de Ny =4 e
p1 = mz (91.19 GeV) para a regidgo de Ny = 5.
As incertezas o referentes ao processo de ajuste
foram estimadas com o auxilio da Eq. :
como hé apenas um nico parametro livre, basta

encontrarmos (numericamente) as solugoes de

X*(ds(s) + 0) = Xauin = 1, (5.4)
sendo d,(s) o valor do acoplamento obtido no
ajuste. E importante ressaltar que deste modo as
incertezas para a(s) sdo puramente estatisticas
— nao estamos levando em conta os erros asso-
ciados ao truncamento da série pertubativa, por
exemplo.

As curvas obtidas nos ajustes sao compara-
das com os dados experimentais na Fig. [6] en-
quanto os valores encontrados para as(s) estao
apresentados na Tab. [l O valor do p-value
nas regioes de Ny = 4 e 5 diz que ambos os
ajustes sao ragoaveis, enquanto o p-value para
a regiao de Ny = 3 nos permite dizer que o
ajuste é excelente. Fica evidente na regiao de
Ny = 3 a necessidade das corregoes previstas
pela QCD para descrever de forma rigorosa o
observavel R(s), ja que nessa regiao de ener-
gia as correcoes sao da ordem de 10%. Para as
regides de Ny =4 e 5 as corregoes de ay(s) sdo
menores, mas ainda assim é possivel verificar
dois conceitos nao triviais da QCD: o nimero de
cores N, = 3 para os quarks e a carga elétrica

fracionada.
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Tabela 1: Valores obtidos para a;(s) nas regides de Ny = 3,4 e 5.

N s (s) Xoin/v__ p-value
3 as(m,) =04141002  3.272/12  0.99
4 a,(4GeV) = 01731005 27.818/18  0.06
5  ag(mgz)=0.1201001s  27.193/18  0.08

Os valores obtidos para as(s) por si s6 ja representam uma verificagdo quantitativa da
liberdade assintotica, mas para realizar uma comparacgao entre os ajustes devemos evoluir os
resultados até uma escala de energia comum. (Como estamos lidando com a acoplamento
forte em apenas um loop, podemos evoluir os resultados obtidos para a,(s) sem impor relagoes
de desacoplamento nos limiares de criagao de novos sabores [17].) O resultado grafico desta

evolugdo estd na Fig. [7] enquanto na Tab. 2] temos uma comparagao entre os valores evoluidos
até a escala /s = myz e o valor médio global j4 fornecido na Eq. .

T 0.15

Evolugao de as com N¢=3 —— Valor médio mundial
na escala m i Valores encontrados
Evolugéo de as com N¢=4 0.141- com os ajustes

na escala 4 GeV

______ Evolugdo de as com N¢=5
na escala my 0.13

0.12— }

as(u)

as(mz)

0.101-

0.09

|
10t 107 0.08 . . .
M (GeV) V\‘// \&// \&//

(a) (b)

Figura 7: Evolucao do valores de a,(s) obtidos nos ajustes. As trés curvas sao comparadas em (a) e
em (b) é comparado os valores obtidos (via evolugao) para as(mz). A linha sélida em (b) representa o
valor médio global fornecido na Eq. (4.14). As hachuras representam o erro associado em 1lo.

Tabela 2: Comparacao dos ajustes na escala myz. Todos os valores sao compativeis em no maximo 20.

Ny =3 Ny =4 N; =5  Média mundial
as(my) | 012475995 0.10179913  0.120%991s  0.1181 4 0.0011

Como os valores encontrados para as(myz) sao todos compativeis e estatisticamente indepen-
dentes, realizamos uma média ponderada e encontramos um valor médio para o acoplamento

forte na escala de energia do béson Z dado por

as(mz) = 0.1211 =+ (0.0044)gqa, (5.5)
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Figura 8: Compilagao geral dos dados experimentais para R(s) fornecidos pelo PDG [16]. Cada salto
nas curvas ocorre em /s &~ 2my. A linha tracejada (vermelha) representa o valor tedrico para R(s) em
ordem ! fornecido pela Eq. e a linha sélida (azul) representa a curva em ordem «; obtida pelos
ajustes. A hachura determina o erro associado em 1o.

onde aqui reforcamos que a incerteza é puramente estatistica. O nosso resultado é compativel
dentro de 1o ao valor médio mundial fornecido pelo PDG.

Por fim, na Fig. |8 mostramos a compilagao geral dos dados experimentais para R(s)
concomitantemente com a curva tedrica em ordem a? — prevista pela Eq. (3.13) — e a curva
em ordem «, obtida pelos ajustes. Algumas das ressonancias presentes estao indicadas. Nos
limitamos a colocar a curva tedrica apenas para /s = 1.5 GeV, visto que para energias abaixo
disso o alto valor para a,(s) torna impreciso o célculo pertubativo na QCD, além da presenca

de varias ressonancias.

6 Conclusao

Neste trabalho estudamos o observavel R(s) relacionado a se¢ao de choque inclusiva de produgao
de hédrons em colisées ete™. Exploramos tanto a sua formulacao tedrica quanto uma abordagem
fenomenolégica para a determinacao do acoplamento forte em regioes com Ny = 3, 4 e 5.

De inicio, detalhamos a relacao entre o observével e a parte imaginéria da fungao ITy(s),
que representa as corregoes da QCD ao propagador do féton, por meio do teorema éptico.
Apresentamos o célculo de II,(s) a um loop com o intuito de determinar explicitamente a
dependéncia de R(s) na energia em ordem ?, incluindo a corregao devido as massas dos quarks.
Isso exigiu explorar algumas das principais técnicas matematicas necessarias para calcular
diagramas que envolvem loops. Contornamos a divergéncia ultravioleta utilizando o processo
de regularizacao dimensional, e com ele foi possivel introduzir os conceitos de regularizacao e

renormalizacao, que comumente sao necessarios em QFT.
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Introduzimos os conceitos do grupo de renormalizacao e da funcao g da QCD, possibilitando
a obten¢ao de uma forma fechada para a evolugao de a4(s) a um loop. Assim, no que rege a
abordagem fenomenolégica, aliamos a descri¢ao teérica para R(s) em ordem «, com os dados
experimentais para extrair valores para o acoplamento forte em diferentes escalas de energia. A
andlise estatisica foi feita numa abordagem frequentista minimizando-se a funcao y2. Obtivemos
a7 (m,) = 04147008 (=4 GeV) = 0173709 ¢ ol (my) = 0.1201091 ¢ com isso
conseguimos verificar de forma quantitativa a celebrada liberdade assintotica prevista pela
funcao f da QCD. Ao evoluir os resultados até a escala de energia do béson Z encontramos um
valor médio para o acoplamento forte dado por a,(mz) = 0.1211 4+ 0.0044, que é compativel
dentro de 1o com o valor médio global calculado pelo PDG.

A abordagem do observavel R(s) deste trabalho exemplificou, ainda que de forma simplificada,
o esfor¢co global empreendido por diversos grupos de pesquisa na determinacao precisa e
competitiva de parametros livres do Modelo Padrao. No ambito da secao de choque ete™ —
(hédrons), a predicao tedrica é conhecida atualmente até ordem a? (5 loops), onde os valores
das correcoes hadronicas ao propagador do féton ja sao comparaveis as correcoes eletrofracas em
primeira ordem. A qualidade dos dados para ete™ — (hadrons) permite, além do tratamento
ponto a ponto de R(s) que realizamos neste trabalho, explorar o uso de regras de soma,
permitindo assim determinagoes ainda mais precisas para as(s) [18]. No artigo de revisao
sobre QCD da Ref. [8] sdo citados alguns dos demais processos trabalhados na comunidade
cientifica para a extracao de as(s), como por exemplo o decaimento hadronico do 7 [19] e QCD
na rede [20].

A fisica de precisao desempenha papel fundamental no desenvolvimento da fisica de particulas.
Com a dimuicao das incertezas é possivel detalhar cada vez mais possiveis desvios da teoria, e

assim contribuir para a busca por fisica Além do Modelo Padrao.
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